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1. Introduction

The AdS-CFT correspondence due to Maldacena [1] is a concrete realisation of ’t Hooft’s

proposal relating Yang-Mills (at large-N) to string theory. The correspondence relat-

ing N = 4 supersymmetric Yang-Mills (SYM) theory to type IIB strings propagating on

AdS5 × S5 has been tested in many different ways. The first tests involved matching com-

putations in the supergravity limit of the string theory and the corresponding ones in the

conformal field theory (CFT) following the proposal in [2]. Recently, it was realised that
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the anomalous dimensions of operators in this theory are given by the energy spectrum of

a spin-chain [3, 4].

The N = 4 theory has a high degree of symmetry and thus it is of interest to under-

stand versions with lesser symmetry. Orbifolds of this theory provide one obvious class of

CFT’s [5, 6]. These lead to theories which are dual to type IIB string theory propagating

on AdS5 × X5, where X5 are five manifolds that are orbifolds of S5. More generally, X5

must be a Sasaki-Einstein manifold. A new class of such manifolds that lead to CFT’s with

N = 1 supersymmetry have also been constructed recently. These manifolds have been

called Lpqr spaces — cones over these spaces are Ricci-flat non-compact six dimensional

manifolds with SU(3) holonomy and are natural generalisations of the conifold [7, 8]. Thus,

these are examples where both sides of the AdS-CFT correspondence are understood even

though we do not fully understand string theory on AdS spaces.

From a field theoretic perspective, Leigh and Strassler [9] considered (multi-parameter)

marginal deformations of N = 4 supersymmetric Yang-Mills theory that preserve N = 1

supersymmetry and are conformal. We shall refer to these theories are known as the

Leigh-Strassler (LS) theories. While there have been attempts [10] to understand the

anticipated dual string theories for these field theories, the precise correspondence is not

known in all generality. An important development due to Lunin and Maldacena [11] was

the construction of the gravity duals for the β-deformed N = 4 SYM which is a sub-class in

the generalised LS family of N = 1 theories. Rational values of β = m/n in the deformation

turn out to be related to (Zn × Zn) orbifolds of S5 with discrete torsion [12 – 15].

The most general Leigh-Strassler N = 1 preserving deformations of N = 4 SYM is

given (in superfields) by the following superpotential:

W = ih Tr
(

eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2

)

+
ih′

3
Tr

(

Φ3
1 + Φ3

2 + Φ3
3

)

. (1.1)

The N = 4 limit occurs when h = g and β = h′ = 0. The β-deformed theory is obtained

when β 6= 0 and h′ = 0. For generic values of the deformations, the global symmetry of

the deformed theory is the trihedral group ∆(27) with its centre being a Z3 sub-group of

the U(1)R symmetry. This is in contrast to the situation when X5 = Lpqr, where one has

a U(1)3 symmetry which is intimately related to the toric nature of these spaces.

The LS deformations are parametrised by the four couplings: g (the Yang-Mills cou-

pling constant), h, h′ and q ≡ eiπβ . While these are all marginal at the classical level,

they are not all marginal in the quantum theory. However, it has been argued by Leigh

and Strassler that in a subspace of the four-dimensional space of couplings, the theory is

conformal. In particular, the vanishing the four beta functions is related to the vanishing

of the anomalous dimension of the scalars fields. The exact expression for the subspace is

not known. However, it is known to two loops and is given by

|h|2
(

1 +
1

N2
(q − q̄)2

)

+ |h′|2 N2 − 4

2N2
= g2 . (1.2)

In the large N limit that we pursue in this paper, the above condition simplifies to

|h|2 +
|h′|2
2

= g2 . (1.3)
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We also choose to work with real β which is possible at the one-loop level. In principle,

this can be done at higher loops as well since the imaginary part of β can be gotten rid of

by redefining h.

Perturbative studies of the β-deformed theory have been carried out by several au-

thors [16 – 21]. Chiral primaries of these theories are known well at least in the planar

(large-N) case [17]. The ultraviolet finiteness of the β-deformed theory has been studied

in ref. [22] and a proof of its ultraviolet finiteness at the planar level has also appeared

recently [23, 24].

For the general LS deformations, the anomalous dimensions for chiral operators with

low values of scaling dimension has been carried out (using super-graphs) in ref. [21] as well

as ref. [25]. This paper focuses on a planar one-loop computation of anomalous dimensions

of single trace operators in order to systematically search for operators that are protected

in the LS theory.1 In this paper, we systematically search for operators whose anomalous

dimensions vanish at planar one-loop in the LS theory. The operators are organised into

representations of ∆(27). We find that protected operators appear in one of the three

representations, L0,0 or Va depending on the value of the scaling dimension, ∆0 modulo

three.

The paper is organised as follows. In section two, we present some of the background

needed for the paper. In particular, we present the F-term superpotential in component

form and show that it contains double trace operators. In section three, we compute

the anomalous dimensions for operators of the form Tr(Zk
1 Z l

2Z
m
3 ). We present the details

of our computation as well as verify that all contributions that appear from non F-term

interactions cancel and that our results are gauge independent. In section four, we compute

the anomalous dimensions for operators up to dimension six in the β-deformed theory as

a preliminary to the computing in the general Leigh-Strassler theory. We verify that the

results are consistent with expected results up to dimension six operators. In section

five which contains the main results of this paper, after organising the operators using

the trihedral group, we compute the planar one-loop anomalous dimension in the Leigh-

Strassler theory. We present our conclusions and outlook in section six. Some technical

details are relegated to the appendix for completeness.

2. Background

2.1 The component Lagrangian for the LS theory

We present here the details of the Lagrangian for the general Leigh-Strassler deformation

in component form. It turns out that unlike the N = 4 Lagrangian, this Lagrangian cannot

be written in terms of a single trace though the superfield Lagrangian is written as a single

1The planar condition simplifies things and enables us to obtain concrete results for operators with

dimensions up to six. The complexity arises from the increase in the number of operators that one has to

consider. For instance, at ∆0 = 6 and Q = 0, one has to consider 46 operators. It must be pointed out

that for the β-deformed theory in the planar limit, ref. [26] has obtained an integrable dilatation operator

and diagonalized it using a Bethe ansatz.
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trace.2 There are some terms that can only be written as a double trace — these terms

are however suppressed by a power of 1/N but cannot be neglected in the large N limit as

we will see.

The simplest way to see the appearance of double trace operators is to consider trace

identity (for SU(N) generators in the fundamental representation):

Tr(AT a)Tr(BT a) = Tr(AB) − 1

N
Tr(A)Tr(B) (2.1)

Notice that both F a
i = ∂W̄/∂Z̄a

i and F̄ a
i = ∂W/∂Za

i are both of the form Tr(AT a) for

some A. We thus see that |F a
i |2 cannot be written in single trace form (using the above

identity) unless the operators A and B are traceless (as in the N = 4 limit). The F-term

interactions (involving bosonic fields) for the LS theory is given by the potential3

VF (Z) = Tr
(

|h′|2Z̄1
2
Z2

1 + hh̄′[Z2, Z3]qZ̄1
2 − h̄h′[Z̄2, Z̄3]qZ

2
1 − |h|2[Z2, Z3]q[Z̄2, Z̄3]q

)

− 1

N

[

|h′|2 Tr(Z̄1
2
)Tr(Z2

1 ) + hh̄′ Tr([Z2, Z3]q)Tr(Z̄1
2
) − h̄h′ Tr(Z2

1 )Tr([Z̄2, Z̄3]q)

−|h|2 Tr([Z2, Z3]q)
(

Tr[Z̄2, Z̄3]q
)

]

+ cyclic permutations (2.2)

The first line are the single trace operators while the last two lines are the double trace

operators. When h′ = 0, one can see that the double trace terms are proportional to (q−q̄)2

which vanishes when q = ±1. Thus the N = 4 SYM theory does not have double trace

terms in its component Lagrangian. Note that the double trace operators also do not exist

when the gauge group is U(N). Since the D-terms are unaffected by the Leigh-Strassler

deformations to the superpotential, they are the identical to the one in the N = 4 theory

(written in terms of N = 1 superfields). The detailed Lagrangian is given in appendix A.

2.2 Symmetries of the LS theory

The N = 4 SYM theory has a R-symmetry which is SU(4). In the β-deformed theory, this

is broken down to U(1)3 — each of the three scalars has charge one under only one of three

U(1)’s with U(1)R being identified with the diagonal. In the Leigh-Strassler theory, the

U(1)3 is further broken down to U(1)R × Z3. The LS theory has another symmetry given

by the cyclic permutation C3 of the three scalar fields. This however, does not commute

with the U(1)R×Z3. The trihedral group, ∆(27) ∼ (Z3×Z3)⋊C3, is a discrete subgroup of

SU(3) ⊂ SU(4) that captures the essential non-abelian nature. The centre of this group is

a Z3 ⊂ U(1)R. The U(1)R charge which is proportional to the scaling dimension for chiral

primaries becomes a Z3 valued charge. Specifically, in our conventions, the value of the

scaling dimension, ∆0, modulo three is the Z3 charge. Historically, the appearance of a 27

parameter non-abelian discrete subgroup was first noticed in ref. [27].4 Our attention to

the appearance of the ∆(27) was drawn from ref. [28] which attributed it to S. Benvenuti.

2This result is implicitly present in the work of Freedman and Gürsoy [17].
3In this paper, we denote the bosonic component of the superfield Φi by Zi and the q-deformed com-

mutator is [Z1, Z2]q ≡ qZ1Z2 − q̄Z2Z1.
4We thank Ofer Aharony for bringing this to our notice.
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We have found the trihedral group extremely useful in organising the chiral operators. For

instance, it reduced the number of free parameters for an operator at dimension six from

46 to three different operators with 26, 10 and 10 parameters.

One may ask whether ∆(27) remains a symmetry of the quantum theory.5 As argued

by Leigh and Strassler, the full quantum effective potential will continue to be of the same

form as the classical one. In other words, quantum corrections renormalised the coefficients

h, h′ and β. Thus, ∆(27) will remain a symmetry of the superpotential. For ∆(27) to be

a symmetry in the quantum theory, however it is also necessary that the Kähler potential

also respects this symmetry. The tree-level Kähler potential does respect the symmetry

and one needs to check if this remains true at higher orders in perturbation theory. We

have not resolved this issue completely and hope to report on this in the future. Since our

one-loop computation makes use of only tree-level interactions, the use of ∆(27) is a valid

one.

Another useful invariance of the action is the following:

Φ1 ↔ Φ2 , h → −h , β → −β and h′ → h′ . (2.3)

This is not a symmetry since it acts on the couplings as well. This however leads to

restrictions on the possible renormalisation of coupling constants.

2.3 Propagators

The propagators for the various fields are as follows, where Feynman gauge has been chosen

to write down the gauge propagator.

〈Za
i Z̄b

j 〉 = δijδ
ab 1

k2
, 〈Aa

µAb
ν〉 = −δab gµν

2k2
,

〈λaλ̄b〉 = −δab σµkµ

2k2
, 〈ψa

i ψ̄b
j〉 = −δabδij

σµkµ

k2
. (2.4)

We have explicitly verified the gauge independence of our results by working in the Landau

gauge as well.

3. Anomalous dimension of Tr
(

Zk
1Z l

2Z
m
3 )

In N = 1 gauge theories, it is known that holomorphy is the basis for certain non-

renormalisation theorems [29]. In order to prove properties that make use of holomor-

phy, one usually works in superfields and regularisation schemes that are compatible with

holomorphy.6 In our context where we are computing anomalous dimensions of operators

involving scalars that arise from chiral superfields, holomorphy implies that the only inter-

action terms that contribute to the anomalous dimension are those that arise from F -terms

as we will explicitly verify.

5We thank Justin David for raising this question.
6A much more modern use of holomorphy and its relation to the Wilsonian effective action is due to

Seiberg [30].
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Figure 1: Contribution from Tr
(

[Z1, Z̄1][Z1, Z̄1]
)

. The figure to the right schematically shows how

the logarithmic divergence was extracted. The interaction vertex is labelled by a filled-in circle.

In computing the anomalous dimension of the operator O, we compute the two-point

function of this operator with its conjugate operator, which we denote by Ō and study its

singularity when the two operators are coincident. One expects

lim
|x|→0

〈O(x)Ō(0)〉 ∼ 1

|x|2∆0
− γ log |x|2

|x|2∆0
,

where ∆0 is the naive scaling dimension of operator and γ its anomalous dimension. Thus

the anomalous dimension is computed extracting the logarithmic singularities and summing

over all such contributions.

For the family of operators Tr
(

Zk
1 Z l

2Z
m
3

)

, we find that, at large N (i.e., in the planar

limit), the one-loop contribution to the anomalous dimension from all interactions take the

following form (on using dimensional regularisation):

Nk+l+m+1

256π6|x|2(k+l+m)

(

1

ǫ
+ 3 log |x|2 + constant

)

× a combinatoric factor (3.1)

When the sum of all contributions is such that the coefficient of ln |x|2 vanishes, we obtain

a candidate for the chiral primary. Recall that for chiral primaries, the scaling dimension

is determined entirely by its U(1)R-charge and hence should receive no corrections. For

a true chiral primary, γ vanishes to all orders. So the vanishing of the planar one-loop

contribution to any operator does not imply that it is a chiral primary since it could obtain

contributions at higher orders. However, such operators provide us with candidates for

chiral primaries.

3.1 Cancellation of non F-term contributions

Since we are working in component form, we need to explicitly verify that all non-

holomorphic contributions to the anomalous dimensions of chiral fields cancel out. These

contributions should vanish irrespective of whether the operator is a chiral primary or not.

While this is expected [31], we use this computation as a non-trivial check of our results.

Such contributions come from three kinds of terms:

• D-term: figures 1 and 2 arise from the D-term interaction vertex

−(g2/4)
∑

i,j Tr
(

[Zi, Z̄i][Zj , Z̄j ]
)

.
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)
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Figure 3: Contribution from gluon exchange
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Figure 4: Contribution from corrections to the scalar propagator

• Gluon exchange: figure 3 indicates the contribution from the gluon-scalar interac-

tion vertex igTr
(

∂µZi[A
µ, Z̄i] + ∂µZ̄i[A

µ, Zi]
)

. This diagram is gauge dependent and

is logarithmically divergent in the Feynman gauge, but non-divergent in the Landau

gauge.

• Self-energy: figure 4 indicates the contribution arising from the self-energy cor-

rection to all scalar propagators. This one is also a gauge dependent contribution.

As we will see the three contribution cancel for all operators that we are considering

here. We now provide some details of this cancellation. We have also verified that the

cancellation holds in both the Feynman and Landau gauge though we will provide details

for the Feynman gauge.

3.2 Details of the cancellation

Evaluation of figure 1. Figure 1 has contributions coming from the interaction term

− g2

4 Tr
(

[Z1, Z̄1][Z1, Z̄1]
)

. We evaluate the loop correction by doing one momentum integral

and then taking the inverse Fourier transform to get the answer in position space. We

consider the fields pairwise and find the loop correction due to the interaction. We cal-

culate loops involving interaction vertex separately in momentum space and then Fourier

transform to position space. We multiply this with the contribution 1/|x|2(k+l+m−2) from

– 7 –
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the part which does not involve interaction vertex. This is schematically explained in the

diagram on the right in figure 1

For an operator of general form Tr
(

Zk
1 Z l

2Z
m
3

)

, there are (k − 1) contributions from

this vertex. But when we have fields of only one flavor, say Z1, there is an additional

term giving a total of k from this interaction vertex. However when k = 1, there are no

contributions from this vertex. Similar contributions for fields of other two flavors ensures

that the combinatoric factor is symmetric in k, l,m. Hence the contribution from this

diagram is

2g2 · Nk+l+m+1
(

Jklm + Gklm

)

4|x|2(k+l+m−2)

[

∫

dDp

(2π)D
eip·x

(∫

dDk

(2π)D
1

k2(k − p)2

)2
]

(3.2)

where Gklm and Jklm are the combinatorial factors with all the properties described above,

given by (δm is the Kronecker delta function and is non-vanishing only when m = 0)

Gklm = −3 +
(

δk + δl + δm

)

+
(

δkδl + δlδm + δmδk

)

− 3δkδlδm (3.3)

and

Jklm = k + l + m −
(

δkδlδm−1 + δk−1δlδm + δl−1δmδk

)

(3.4)

The momentum integral in eq. (3.2) is evaluated in appendix. We find the contribution

from this figure as

g2Nk+l+m+1
(

Jklm + Gklm

)

2(|x|2)k+l+m−2

Γ2[ǫ]Γ4[1 − ǫ]

(4π)DΓ2[2 − 2ǫ]

[ ∫

dDp

(2π)D
eip·x

(p2)2ǫ

]

=
g2Nk+l+m+1

(

Jklm + Gklm

)

256π6|x|2(k+l+m)

(

1

ǫ
+ 1 + 5γE + 3 log π + 3 log |x|2

)

, (3.5)

where γE is Euler constant.

Evaluation of figure 2. Figure 2 involves the D-term interaction− g2

4 Tr
(

[Z1, Z̄1][Z2, Z̄2]
)

and similar terms obtained by cyclic permutation of flavor indices. Here we notice that

when the operator has fields of all three flavors the combinatorial factor must be 3. When

the there are fields of two flavors this factor must be 2. There is no such interaction

when there are only fields of single flavor and hence there is no contribution from this

diagram. The integral to be evaluated is the same as in figure 1. The contribution from

this interaction vertex is

−g2 Nk+l+m+1 Gklm

256π6(|x|2)k+l+m

(

1

ǫ
+ 1 + 5γE + 3 log π + 3 log |x|2

)

(3.6)

Contribution from figure 3. The interaction vertex is ig Tr∂µZ[Aµ, Z̄] + c.c. The

calculation of corrections is again done by taking propagators pairwise, as in the previous

cases. We realise that out of the different types of contractions possible only two are giving

rise to any divergence. To find the combinatorial factor for figure 3 can be easily identified

– 8 –
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as the some of the combinatorial factors of the above two diagrams. The net contribution

from this diagram is

2
g2

2

Nk+l+m+1Jklm

(|x|2)k+l+m−1
×

∫

dDp

(2π)D
eip·x

∫ ∫

dDkdDq

(2π)2D

k · (k − p)

(k − q)2(k − p)2q2(q − p)2k2

=
g2Nk+l+m+1Jklm

256π6(|x|2)k+l+m
×

(

1

ǫ
+ 2 + 3γE + 3 log π + 3 log |x|2

)

(3.7)

Contribution from the self-energy. This contribution arises out of the one-loop cor-

rection to the scalar propagator 〈ZiZ̄i〉. The calculation of one-loop corrected scalar prop-

agator is given in the appendix. This correction is represented by the blob in figure 4. Here

again we calculate the contribution from figure 4 by taking lines pairwise, where one of the

two lines has the blob. (This is needed to match the numerical factors in the calculation

of other diagrams.) This blob can appear on any of the
(

k + l + m
)

lines. Taking into

consideration that the gauge group is SU(N) the combinatorial factor from figure 4 is seen

to be Jklm. Multiplying this by a factor of 1
|x|2(k+l+m−2) from the rest of the (k + l + m− 2)

lines, the one-loop correction to scalar propagator is obtained in momentum space from

eq. (D.7) as

−2N
(

|h|2 + |h′|2/2
)

Tr(T aT b)

∫

dDk

(2π)D
1

k2(k − p)2p2

= −2N
(

|h|2 + |h′|2/2
)

Tr(T aT b)
Γ(ǫ)B[1 − ǫ, 1 − ǫ]

(4π)2−ǫ(p2)1+ǫ
(3.8)

Inserting this into the figure 4 and calculating the loop

−2
N3

(

|h|2 + |h′|2/2
)

Γ(ǫ)B[1 − ǫ, 1 − ǫ]

(4π)2−ǫ

∫

dDp

(2π)D
1

(p − q)2(p2)1+ǫ

= −2
N3

(

|h|2 + |h′|2/2
)

Γ(ǫ)Γ(2ǫ)B[1 − 2ǫ, 1 − ǫ]B[1 − ǫ, 1 − ǫ]

(4π)4−2ǫ B[1, 1 + ǫ] Γ(2 + ǫ) (q2)2ǫ
(3.9)

The N3 factor arises when we contract the Tr(T aT b) with generators coming from the op-

erator. In the above, the momentum integral is again evaluated using Feynman parametri-

sation and then Fourier transformed to position space to obtain

−2
N3

(

|h|2 + |h′|2/2
)

Jklm

256π6|x|4
(

1

ǫ
+ 2 + 3γE + 3 log π + 3 log |x|2

)

(3.10)

Together with the rest of the lines in figure 4, which gives a factor of Nk+l+m−2

|x|2(k+l+m−2) multiplying

it, the total contribution of figure 4 is

−2
Nk+l+m+1

(

|h|2 + |h′|2/2
)

Jklm

256π6|x|2(k+l+m)

(

1

ǫ
+ 2 + 3γE + 3 log π + 3 log |x|2

)

(3.11)

We can see that the coefficients of log |x|2 (as well as that of 1/ǫ) in eqs. (3.5)–(3.7), (3.11)

add up to zero. In particular, the term involving Gklm appears only from the contributions

from figure 1 and 2 and they cancel. The term involving Jklm adds up to give a term

proportional to (g2 − |h|2 − |h′|2/2), which is proportional to the beta function and hence

vanishes in the conformal limit. Hence the only contribution to the required correlator

comes from the F-term interaction as expected.
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3.3 F-term contribution

The computation of the anomalous dimension for quadratic operators such as Tr(Z2Z3)

and Tr(Z2
1 ) differs from all other values of k, l,m. Postponing the details for quadratic

operators, in the following subsection we will exclude values of k, l, m where k+ l+m = 2.

The contribution from the F-term is obtained from a diagram similar to the one given in

figure 2. The interaction vertices involved are |h|2Tr
(

[Z1, Z2]q[Z̄1, Z̄2]q
)

, −|h′|2Tr
(

Z̄1
2
Z2

1

)

and its cyclic permutations, where [Z1, Z2]q = qZ1Z2 − q̄Z2Z1. The combinatorics and

integrals are the exactly as described earlier. In addition, here, when k 6= 0, l = 1,m = 0,

contributions involving the parameter q appear. The factor Sklm is introduced to take this

into account. The contribution to the above two-point correlator is
[

2|h|2
(

(

q2 + q̄2
)

Sklm + Gklm

)

− 2|h′|2(Jklm + Gklm)
]

× Nk+l+m+1

256π6|x|2(k+l+m)

(

1

ǫ
+ 1 + 5γE + 3 log(π) + 3 log |x|2

)

(3.12)

where

Sklm = δk−1δl

(

1 − δm

)

+ δkδl−1

(

1 − δm − δm−1

)

+δl−1δm

(

1 − δk

)

+ δlδm−1

(

1 − δk − δk−1

)

+δm−1δk

(

1 − δl

)

+ δmδk−1

(

1 − δl − δl−1

)

(3.13)

The vanishing of the anomalous dimension now gives the condition

|h|2
(

(

q2 + q̄2
)

Sklm + Gklm

)

− |h′|2(Jklm + Gklm)
)

= 0 (3.14)

Before looking for solutions in full generality, let us first consider the N = 4 limit, i.e.,

q = ±1 and h′ = 0. In this limit, we obtain

2Sklm + Gklm = 0 (3.15)

This has two non-trivial solutions:

(i) k > 2, l = m = 0 and permutations thereof;

(ii) k > 1, l = 1, m = 0 and permutations thereof.

(i) corresponds to operators of the form Tr
(

Zk
1

)

, and (ii) corresponds to operators of the

form Tr
(

Zk
1 Z2

)

. All these are the known N = 4 chiral primary operators of the form we

considered.7

We next consider the β-deformed theory which corresponds to keeping h′ = 0 and

restoring arbitrary values for q. The vanishing of the anomalous dimension is now

|h|2
(

(

q2 + q̄2
)

Sklm + Gklm

)

= 0 (3.16)

7This list actually misses out the quadratic operators Tr
`

ZiZj) which are also chiral primaries. As

mentioned earlier, the general formula given in eq. (3.14) is not valid for these operators since there is an

extra contribution appearing in the deformed theory. This will be discussed in the next subsection.
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Among the two classes of solutions that we obtained in the N = 4 limit, we see that those

of type (i) continue to have vanishing anomalous dimension since Sklm and Gklm vanish

separately for those values of k, l,m. However, this is no longer true for the operators of

type (ii). These operators have the charges given in the list of chiral primaries given by

Lunin and Maldacena for the β-deformed theory [11].

Finally, we now consider the Leigh-Strassler theory, where h′ 6= 0 as well. None of

the N = 4 chiral primaries are protected in this theory. However, in the limit h = 0, the

operator Tr
(

Z1Z2Z3

)

(and also Tr
(

Z1Z3Z2

)

) is found to be a solution of the eq. (3.14),

which is easy to understand as this operator cannot get any contribution at one loop from

the h′ interaction. We will now discuss the operators Tr
(

Z2
1 ) and Tr

(

Z2Z3

)

that were not

considered earlier. We will see that both these operators are protected in the Leigh-Strassler

theory.

3.4 Anomalous dimension for Tr
(

ZiZj)

The anomalous dimension for dimension two operators obtains contributions from interac-

tions involving double trace operators that appear in VF . In the β-deformed theory, this

interaction only affects the Tr(Z2Z3) operator, while in the general LS theory, the operator

Tr
(

Z2
1 ) is affected by the h′ dependent double trace operator. For all other operators, one

finds that interactions involving double trace operators provide contributions that are sup-

pressed by a factor of 1/N relative to the single trace interactions and thus can be ignored

in the large N limit.

The computation for these operators differs from the above due to a subtlety in taking

the large N limit. The deformed theories have an extra interaction, as seen from eq. (2.2),

which is suppressed by a factor of N relative to other interactions as it is a multi-trace

operator.8 For a dimension two operator, the trace algebra works out as follows,

1

N
Tr(T aT b)Tr(T aT b)Tr(T cT d)Tr(T cT d) =

1

N

[

N2 − 1

N
×N

]2

=
(N2 − 1)2

N
∼ N3 . (3.17)

The ∼ N3 contribution is seen to be of the same order as the one from the single trace

interaction piece in eq. (2.2). This can be ignored in the large N limit while computing

anomalous dimension for operators of dimension > 2. The important point to note is that

this contribution is precisely the one that makes the anomalous dimension for Tr(ZiZj)

vanish (as has already been shown by others using different methods.)

3.5 Summary of results

We have seen that in the β-deformed theory, at one-loop, the family of operators of the

form Tr
(

Zk
1

)

and Tr
(

Z1Z2

)

are protected. For the Leigh-Strassler theory, we have only

two kinds of operators which survive on including the h′ deformation. They are Tr
(

Z2
1

)

and Tr
(

Z2Z3

)

.

8Recall that while the superfield Lagrangian has a single trace, the component Lagrangian is obtained

by eliminating the auxiliary variables D and F . Thus, the bosonic potential ends up being a double trace

which can be sometimes rewritten as a single trace using identities such as eq. (2.1). This term does not

appear for U(N) as well. Note also that it vanishes in the N = 4 limit.
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In order to further generalise the kinds of operators that one must consider, we revisit

the chiral primaries of the N = 4 theory. We have found chiral primaries that involve only

two flavors of the scalars. What about those involving three flavours? The simplest one

will involve one of each flavor. The N = 4 chiral primary is

Tr
(

Z1Z2Z3 + Z1Z3Z2

)

.

More generally, chiral primaries of N = 4 SYM are obtained by considering linear combi-

nations of all possible orderings of operators. For instance, the above operator has 2 = 3!/3

possibilities. The 3! is the order of the permutation group in 3 objects and the division by

3 reflects the cyclic property of the trace. Given a monomial, zJ1
1 zJ2

2 zJ3
3 , the corresponding

N = 4 primary is given by the expression (with n = J1 + J2 + J3)

∑

π∈Sn

cπ Tr
(

πZJ1
1 ZJ2

2 ZJ3
3

)

, (3.18)

where we sum over all permutations π and cπ is a symmetry factor [17]. Thus, there is a one-

to-one correspondence between monomials and N = 4 chiral primaries. Thus, at dimension

∆0, the number of chiral primaries is (∆0+1)(∆0+2)/3 which is the number of monomials at

degree ∆0. Based on the form of F-term equations like F̄1 = qZ2Z3− q̄Z3Z2 = 0, Freedman

and Gürsoy(FG) have argued that one needs to associate a factor of q̄2 for terms that are

related by the exchange of Z2 and Z3. For instance, the chiral primary involving all three

flavors, will become

Tr
(

qZ1Z2Z3 + q̄Z1Z3Z2

)

.

in the β-deformed theory by their prescription. We will refer to this as the FG prescription.

In the sequel, we will verify the FG prescription works for operators involving up to six

powers of the scalars only when they turn out to be chiral primaries.

4. Chiral primaries in the β-deformed theory

Chiral primaries in the β-deformed theory are classified by three charges corresponding to

a U(1)3 subgroup of the SO(6) R-symmetry in the N = 4 theory. The three scalars Z1,

Z2 and Z3 have charges (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively. Chiral primaries are

thus labelled by their U(1)3 charges. Here we consider two-point functions of operators

with charges (J1, J2, J3): (2, 1, 1), (3, 1, 1), (2, 2, 1), (4, 1, 1) and (2, 2, 2) — these are all the

operators with (J1 + J2 + J3) ≤ 6 with all Ji non-vanishing.

For a given choice of (J1, J2, J3), there are several operators that carry this charge.

For example, there are three operators with charge (2, 1, 1) as shown below. We choose

linear combinations of all such operators in two steps. First, we obtain the corresponding

N = 4 primary. Second, we introduce powers of q̄ following the FG prescription [17]. This

is potentially a candidate for a chiral primary. We then put in arbitrary coefficients in

front of all operators to make our ansatz more general. We then compute the anomalous

dimensions of these operators at planar one-loop and obtain the condition for the vanishing

of their anomalous dimensions.
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In the following, we will see that the planar one-loop contribution to the anomalous

dimension for all operators can be written as the sum of the absolute squares. This enables

us to solve the equations easily without any hidden assumptions.

(2, 1, 1) operator

We take the chiral primary to be of the following form

O211 = Tr
(

Z2
1Z2Z3 + bq̄2Z1Z2Z1Z3 + cq̄2Z2Z

2
1Z3

)

. (4.1)

The computation of the anomalous dimension of this composite operator proceeds as before.

The vanishing of the anomalous dimension is given by the condition9

{

3|c|2 + 4|b|2 + 3 − 2Re
[

(2b̄ + c̄) + 2q̄2bc̄
]}

= 0 (4.2)

The condition can be rewritten as follows:

2|b − 1|2 + |c − 1|2 + 2|bq̄2 − c|2 = 0 .

This is a sum of three positive definite terms and is solved by b = c = 1 and q̄2 = 1 which

makes it a chiral primary only for the N = 4 theory.

(3, 1, 1) operator

Here the chiral operator is taken to be

O311 = Tr
(

Z3
1Z2Z3 + bq̄2Z3

1Z3Z2 + cq̄2Z2
1Z2Z1Z3 + dq̄4Z2

1Z3Z1Z2

)

. (4.3)

There is an ambiguity in applying the FG prescription. For instance, the operator with

coefficient b can be associated with either q̄2 (as we have chosen) or q̄6. This ambiguity

disappears when q4 = 1. The condition for the vanishing of the planar one-loop anomalous

dimension is

3|b|2 + 4|c|2 + 4|d|2 + 3 − 2Re
[

b̄ + 2c̄ + 2bd̄q4 + 2cd̄
]

= 0 . (4.4)

The above expression can be written as follows:

|b − 1|2 + 2|c − 1|2 + 2|bq4 − d|2 + 2|c − d|2 = 0 . (4.5)

This has a solution only when q4 = 1 and b = c = d = 1. This is precisely the situation

where the FG prescription works. When q = ±1, this is N = 4 chiral primary. When

q = ±i, this operator is also a protected operator. This is again a result expected from

Lunin and Maldacena [11] — this is a chiral primary in the Z2 × Z2 orbifold of N = 4

theory. For all other values of β, this operator is not a chiral primary.

9It is easy to extract the 3 × 3 matrix of anomalous dimensions from the following expression. It may

have some use in writing out the Hamiltonian for the spin-chain but its use is limited due to the small

length of the chain.

– 13 –



J
H
E
P
0
5
(
2
0
0
7
)
0
3
8

(2, 2, 1) operator

For the operator

O221 = Tr
(

Z2
1Z2

2Z3 + bq̄2Z2
1Z2Z3Z2 + cq̄4Z2

1Z3Z
2
2 + dq̄2Z1Z2Z3Z1Z2

+ f q̄4Z2Z1Z3Z2Z1 + gq̄4Z1Z
2
2Z1Z3

)

. (4.6)

the condition for the vanishing of the one-loop anomalous dimension is

−2Re
[

b̄ + d̄ + ḡq2 + bc̄ + bf̄ + 2df̄ + dḡ +
(

bd̄ + cf̄ + f ḡ + cḡ
)

q2
]

+4|b|2 + 3|c|2 + 5|d|2 + 5|f |2 + 4|g|2 + 3 = 0 . (4.7)

This can be written as the sum of squares as follows:

|b − 1|2 + |d − 1|2 + |gq2 − 1|2 + |b − c|2 + |bq2 − d|2 + |b − f |2

+|cq2 − g|2 + |cq2 − f |2 + 2|d − f |2 + |d − g|2 + |fq2 − g|2 = 0 . (4.8)

The solution occurs only when q2 = 1 and b = c = d = f = g = 1 which is the known

N = 4 chiral primary. Thus, this is not a chiral primary for generic values of β.

(4, 1, 1) operator

We next consider the operator with charge (4, 1, 1). Below the powers of q have been

assigned using the FG prescription. However, there is an ambiguity in assigning the powers

of q̄. For instance, the operator multiplying the coefficient b3 can be assigned either 1 or

q̄6 since it can be reached by two different set of exchanges. This ambiguity however goes

away when q6 = 1.

O411 = Tr
(

bZ4
1Z2Z3 + b1q̄

2Z4
1Z3Z2 + b2q̄

4Z2
1Z2Z

2
1Z3

+ b3q̄
6Z1Z2Z

3
1Z3 + b4q̄

2Z1Z3Z
3
1Z2

)

. (4.9)

The vanishing of the anomalous dimension at one-loop is

3|b|2 + 3|b1|2 + 4|b2|2 + 4|b3|2 + 4|b4|2 − 4Re

[

bb̄4 +
1

2
bb̄1 + b1b̄3q

6 + b2b̄3 + b2b̄4

]

= 0 .

Again, this can be written as the sum of absolute squares.

|b − b1|2 + 2|b − b4|2 + 2|b1q
6 − b3|2 + 2|b2 − b3|2 + 2|b2 − b4|2 = 0 . (4.10)

Clearly this has a solution b = b1 = b2 = b3 = b4 only when q6 = 1. Note that this is

precisely the value of q, where the ambiguity in the FG prescription is removed.
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(2, 2, 2) operator

For the operator

O222=Tr
(

dZ2
1Z2

2Z2
3 + d1q̄

2Z2
1Z2Z3Z2Z3 + d2q̄

4Z2
1Z2Z

2
3Z2 + d3q̄

4Z2
1Z3Z

2
2Z3 (4.11)

+d4q̄
6Z2

1Z3Z2Z3Z2 + d5q̄
8Z2

1Z2
3Z2

2 + d6q̄
2Z2

3Z1Z2Z1Z2 + d7q̄
4Z1Z2Z1Z3Z2Z3

+d8q̄
6Z2

3Z2Z1Z2Z1 + d9q̄
4Z1Z

2
2Z1Z

2
3 + d14q̄

6Z2
2Z1Z3Z1Z3

+
d11

2
q̄2Z1Z2Z3Z1Z2Z3 + d12q̄

4Z2Z1Z2Z3Z1Z3 + d13q̄
4Z1Z3Z1Z2Z3Z2

+d10q̄
2Z2

2Z3Z1Z3Z1 +
d15

2
q̄6Z1Z3Z2Z1Z3Z2

)

we obtain the following condition for the vanishing of the anomalous dimension

3|d|2 + 5|d1|2 + 4|d2|2 + 4|d3|2 + 5|d4|2 + 3|d5|2 + 5|d6|2 + 6|d7|2 + 5|d8|2 + 4|d9|2

+3|d11|2 + 5|d14|2 + 6|d12|2 + 6|d13|2 + 5|d10|2 + 3|d15|2 − 2Re
[

dd̄6 + dd̄1 + dd̄10

+d1d̄7 + d2d̄6 + d2d̄8 + d4d̄7 + d5d̄8 + d14d̄12 + d6d̄9 + d8d̄9 + d1d̄3 + d13d̄10 + d11d̄13

+d12d̄10 + d15d̄13 + d3d̄4 + d14d̄13 + d5d̄4 + d6d̄7 + d1d̄2 + d4d̄2 + d11d̄12 + d7d̄8

+d15d̄12 + d6d̄12 + d9d̄10 + d9d̄14 + d8d̄12 + d4d̄13 + d5d̄14 + d10d̄3 + d3d̄14

+d11d̄7 + d13d̄1 + d15d̄7

]

= 0 .

(4.12)

This is independent of q = eiπβ and is solved by d = d1 = · · · = 1 as can be clearly seen

after rewriting the above expression in terms of sums of absolute squares.

|d − d1|2 + |d − d6|2 + |d − d10|2 + |d1 − d7|2 + |d1 − d3|2 + |d1 − d2|2 + |d1 − d13|2

+|d2 − d6|2 + |d2 − d8|2 + |d2 − d4|2 + |d3 − d4|2 + |d3 − d14|2 + |d3 − d10|2

+|d5 − d8|2 + |d5 − d4|2 + |d5 − d14|2 + |d4 − d7|2 + |d4 − d13|2 + |d6 − d9|2

+|d6 − d7|2 + |d6 − d12|2 + |d7 − d8|2 + |d7 − d11|2 + |d7 − d15|2 + |d8 − d9|2

+|d8 − d12|2 + |d9 − d14|2 + |d9 − d10|2 + |d11 − d13|2 + |d11 − d12|2 + |d14 − d12|2

+|d14 − d13|2 + |d12 − d10|2 + |d12 − d15|2 + |d13 − d10|2 + |d13 − d15|2 = 0 .

(4.13)

Hence this is a chiral primary for any value of β on implementing the FG prescription.

By studying the non-renormalisation properties of operators up to dimension six, we

see that for generic β, chiral primaries appear only as operators of the form (k, k, k) and

(k, 0, 0) (other than the quadratic operators) as expected from the refs. [17, 14, 15, 11].

Further, the FG prescription works for these operators. The absence of an ambiguity in

implementing the FG prescription seems to be the key to the vanishing of the one-loop

anomalous dimension. This also picks out the special values of q for which some operators

are protected.

– 15 –



J
H
E
P
0
5
(
2
0
0
7
)
0
3
8

5. General Leigh-Strassler deformation

The general Leigh-Strassler deformation is invariant under the action of the trihedral group

∆(27) which is a finite non-abelian subgroup of SL(3, C). The centre of this group is a Z3

which is sub-group of U(1)R. Thus, the U(1)R charge can be identified with the Z3 charge.

Chiral primaries in this theory must appear as irreducible representations of ∆(27). In

appendix B, we have provided relevant details of the irreducible representations of ∆(27).

Based on the representation theory, we obtain the following important and useful result:

1. When the scaling dimension, ∆0 = 0 mod 3, then chiral primaries must appear in

any one of the nine one-dimensional representations, LQ,j (Q, j = 0, 1, 2). The repre-

sentation L0,0 corresponds to a singlet of ∆(27). We will label such operators O(Q,j)
∆0

to indicate the representation they belong to. The charge Q for one-dimensional

representations can be identified with the charge proposed in [21].

2. When the scaling dimension, ∆0 = a mod 3 (a 6= 0), then chiral primaries appear in

the three-dimensional representation, Va and thus three operators form a triplet. We

label all such operators by Oa
∆0

. Given one operator of the triplet, the other two can

be generated by the cyclic replacement τ : Z1 → Z2 → Z3 → Z1.

This observation is useful in many ways. There will be no mixing between operators which

sit in distinct representations of ∆(27). This leads to a nine-fold reduction in the operators

that one needs to consider for one-dimensional representations and a three-fold reduction

for the three-dimensional representations.

∆0 = 3, Q = 0 operators

Since ∆0 = 0 mod 3, one has to only consider the one-dimensional representations. There

are three operators with (Q, j) = (0, 0) and we will consider the most general linear com-

bination of them.

O(0,0)
3 = tr

(

aZ3
1 + aZ3

2 + aZ3
3 + bZ1Z2Z3 + cZ1Z3Z2

)

(5.1)

The vanishing of the one-loop correction to the anomalous dimension is given by

27|a|2|h′|2 + 9(hh̄′qab̄ + h̄h′q̄āb) − 9(hh̄′q̄ac̄ + h̄h′qāc)

−3(|h|2q̄2bc̄ + |h|2q2b̄c) + 3(|b|2 + |c|2)|h|2 = 0 (5.2)

This can easily be seen as equivalent to

|h̄
(

bq̄ − cq
)

+ 3ah̄′|2 = 0 (5.3)

This has two solutions:

(i) a = 0, b = q and c = q̄. This implies that the Tr
(

qZ1Z2Z3 + q̄Z1Z3Z2

)

which was a

chiral primary in the β-deformed theory is protected at one-loop in the LS theory as

well.
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(ii) a = 1, b = −3h̄′

2h̄
q, c = 3h̄′

2h̄
q̄. This is the operator

Tr

[

(Z3
1 + Z3

2 + Z3
3 ) − 3m

2
(qZ1Z2Z3 − q̄Z1Z3Z2)

]

, where m ≡ h̄′

h̄
.

There are two other operators with Q = 0 and j = 1, 2 — these are

O(0,j)
3 = Tr

[

Z3
1 + ωjZ3

2 + ω2jZ3
3

]

.

These are descendants10 and hence are not chiral primaries.

∆0 = 3, Q = 1 operators

For this operator

O(1,j)
3 = Tr

(

Z2
1Z2 + ωjZ2

2Z3 + ω2jZ2
3Z1

)

(5.4)

the vanishing of the one-loop correction to the anomalous dimension is

3
(

|h′|2 + |h|2|q − q̄|2
)

+ 2Re
[

hh̄′(q − q̄)
(

1 + ωj + ω2j
)]

= 0 (5.5)

When j 6= 0, the above equation has no solution (except in the N = 4 limit) implying that

the operators are not chiral primaries. They are known descendants [21]. However, when

j = 0, the condition becomes

3|h′ + h(q − q̄)|2 = 0 ,

which has a solution only when h′ = h(q− q̄). At all other points in the space of couplings,

the operator is a descendant.

∆0 = 4 operator

The operator that we will consider here is in the three-dimensional representation, V1, of

∆(27). Below, we will consider only one operator in the triplet since the result is valid for

all three operators. The operator has charge Q = 1. Further, it is a linear combination of

several N = 4 primaries — the unknown coefficients are labelled to remind the reader of

this fact. For instance, below terms with coefficient using the same letter of the alphabet

are part of the same N = 4 primary.

O1
4 = tr

(

Z4
2 + b Z3

1Z2 + c Z2
1Z2

3 + c1Z1Z3Z1Z3 + d Z1Z
2
2Z3

+ d1Z1Z2Z3Z2 + d2Z3Z
2
2Z1 + fZ3

3Z2

)

(5.6)

10It follows from the representation theory of ∆(27) that there are nine descendants (with ∆0 = 3), one

in each of the irreps, LQ,j . When, (Q, j) = (0, 0), there are three operators and one descendant while

there are one operator in other sectors. We obtain two protected operators in the ∆0 = 3 sector which is

consistent with this counting.
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Requiring the vanishing of the one-loop correction to the anomalous dimension, we get,

16|h′|2 + |b|2
(

2|h′|2 + |h|2|q − q̄|2
)

+ 2|c|2
(

|h′|2 + |h|2
)

+ |d|2
(

|h′|2 + 3|h|2
)

+ |f |2
(

2|h′|2 + |h|2|q − q̄|2
)

+ 4|h|2|d1|2 + 8|h|2|c1|2 + |d2|2
(

|h′|2 + 3|h|2
)

+ 2Re
[

4hh̄′q d̄ − 4hh̄′q̄ d̄2 − h′h̄(q − q̄)bc̄ + hh̄′q bd̄ − h′h̄(q − q̄)d1b̄ − hh̄′q̄ bd̄2

−h′h̄q cd̄ − 2|h|2(cc̄1)(q
2 + q̄2) + hh̄′q d2c̄ + hh̄′(q − q̄)cf̄ + 2h′h̄q̄ c1d̄

−2h′h̄q c1d̄2 + h′h̄q̄ df̄ − h′h̄(q − q̄)d1f̄ − h′h̄q d2f̄ − 2|h|2q2 d1d̄

−|h|2q2 d2d̄ − 2|h|2q̄2 d1d̄2

]

= 0 . (5.7)

The above equation is rather hard to analyse and one may wonder if it has a solution.

We now make use of the fact that in the limit h′ = 0, these equations should provide us

conditions that appeared in the β-deformed theory. We have already seen that these can

be written as the sum of squares. Using this result as input (and a check!), we deform

the h′ = 0 term suitably such that all terms that appear as h′h̄ that appear above are

accounted for. This strategy works rather well and we obtain an expression (given below)

that is easily analysed.

|4h̄′ + h̄q̄d − h̄qd2|2 + |h̄q̄d − h̄qd1 + h̄′b|2 + |h̄q̄d − h̄qd1 + h̄′f |2

+ |h̄q̄d1 − h̄qd2 + h̄′b|2 + |h̄q̄d1 − h̄qd2 + h̄′f |2 + |h̄q̄c − 2h̄qc1 − h̄′d|2

+ |h̄qc − 2h̄q̄c1 + h̄′d2|2 + |h̄(q − q̄)b − h̄′c|2 + |h̄(q − q̄)f − h̄′c|2 = 0

(5.8)

This equation has the following definite solution providing us the required chiral pri-

mary operator at one-loop planar level.

b = f =
4m3 (q2 + q̄2 − 1)

m3(q2 + q̄2) − (q − q̄)3
c =

4m2 (q − q̄) (q2 + q̄2 − 1)

m3(q2 + q̄2) − (q − q̄)3

d = − 4m
(

m3q̄ − q(q − q̄)2
)

m3(q2 + q̄2) − (q − q̄)3
c1 =

2m2
(

q − q̄ + m3
)

m3(q2 + q̄2) − (q − q̄)3

d1 =
4m (q − q̄)

(

q − q̄ + m3
)

m3(q2 + q̄2) − (q − q̄)3
d2 =

4m
(

q2 + q̄2 − 2 + m3q3
)

q2(m3(q2 + q̄2) − (q − q̄)3)
(5.9)

where m = h̄′

h̄
. We thus find only one protected operator that exists for generic values of

the couplings.

∆0 = 6, Q = 1 operators

We consider dimension six operators which are in the one-dimensional representation of

∆(27). This is an example where the condition that the operator be in an irrep of ∆(27)

(rather than an abelian subgroup as considered in [18], for instance) leads to a simplifica-
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tion. There is a three-fold reduction in the number of constants in the problem.

O(1,j)
6 = Tr

(

Z5
1Z2 + bZ4

1Z2
3 + b1Z

3
1Z3Z1Z3 + b2Z

2
1Z3Z

2
1Z3 + cZ3

1Z2
2Z3 (5.10)

+ c1Z
3
1Z2Z3Z2 + c2Z

3
1Z3Z

2
2 + c3Z

2
1Z2Z1Z2Z3 + c4Z

2
1Z2Z1Z3Z2

+ c5Z
2
1Z2

2Z1Z3 + c6Z
2
1Z2Z3Z1Z2 + c7Z

2
1Z3Z1Z

2
2 + c8Z

2
1Z3Z2Z1Z2

+ c9Z1Z2Z1Z2Z1Z3

)

+ωjTr
(

Z5
2Z3+bZ4

2Z2
1 +· · ·

)

+ω2jTr
(

Z5
3Z1+bZ4

3Z2
2 + · · ·

)

Given the complexity of the expression for the anomalous dimension, we used the same

strategy that was employed for the ∆0 = 4 operator. This enabled us to re-express the

anomalous dimension as the sum of absolute squares as given below.11

|(q − q̄) − mb|2 + |m + q̄c3 − qc4|2 + |m + q̄c − qc1|2 + |m + q̄c1 − qc2|2

+|m + q̄c6 − qc8|2 + |mb + q̄c − qc5|2 + |mc7 + q̄c − qc3|2 + |mc + q̄c6 − qc1|2

+|mc2 + q̄c1 − qc4|2 + |mc5 + q̄c8 − qc2|2 + |mb + q̄c7 − qc2|2 + |mb1 + q̄c3 − qc9|2

+|mc + q̄c3 − qc5|2 + |mc6 + q̄c3 − qc6|2 + |mc1 + q̄c9 − qc4|2 + |mb + q̄c6 − qc4|2(5.11)
+|mc4 + q̄c4 − qc8|2 + |2mb2 + q̄c5 − qc7|2 + |mc8 + q̄c5 − qc9|2 + |mc1 + q̄c6 − qc9|2

+|mc3 + q̄c9 − qc7|2 + |mc2 + q̄c7 − qc8|2 + |mb1 + q̄c9 − qc8|2 + |mc + q̄b1 − qb|2

+|mc2 + q̄b − qb1|2 + |mc5 + 2q̄b2 − qb1|2 + |mc7 + q̄b1 − 2qb2|2 = 0

Trying to solve the constraint equations arising from the above, we can see that there is

no generic state satisfying them. Thus, there are no protected operators for generic values

of couplings. However, at specific sub-loci in the coupling space there are solutions. These

belong to several branches which we list below: Branches (i) and (ii) are connected to the

operators that appear when q4 = 1 in the β-deformed theory. Branch (v) degenerates to a

linear combination of N = 4 primaries when q2 = 1. Branches (iii) and (iv) do not have

such a limit.

(i) q2 = −1, with h, h′ arbitrary. The solution is given by b = (q − q̄)/m, b1 = (m2 +

2)/mq, b2 = q/m; c = c2 = c4 = c5 = c6 = c7 = 1, c1 = c8 = −(1+mq), c3 = q(q+m)

and c9 = (mq − 1 − m2).

(ii) q2 = 1, mq = −1. The solution is given by the choices b = c1 = c8 = 0, b1 = b2 =

c = c4 = c5 = c6 = c9 = 1, c2 = c7 = −1 and c3 = 2.

(iii) m = 1/q. The solution is given by b = c1 = c3 = q2 − 1, b1 = c2 = c4 = c6 = c7 =

c9 = 1, b2 = 1/q2, c = q4 − q2 + 1, c5 = (q4 − 2)/q2 and c8 = 2/q2.

(iv) m = −q. The solution is given by b = q−2 − 1, b1 = c = c4 = c5 = ic6 = c9 = 1,

b2 = q2, c1 = −1, c2 = q−4 − q−2 − 1, c3 = 2q2, c7 = q−2 − 2q2 and c8 = −1 + q−2.

(v) m = q − q̄, b = b1 = c = c2 = c3 = c4 = c5 = c6 = c7 = c8 = c9 = 1 and b2 = 1/2.

11The corresponding expression for the j 6= 0 operators take a similar form. It is obtained by the

the following replacements on the j = 0 expressions: mb → mbωj , mbi → mbiω
j , mc → mcω2j . and

mci → mciω
2j . Note that if any of the coefficients appears without being multiplied by m, it is left

unchanged. It turns out these equations do not have a solution indicating that they are all descendants.
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∆0 = 6, Q = 0 operators

We now consider operators with ∆0 = 6 and Q = 0. There are three operators in the

representations, L0,j that we need to consider. We first consider the operator in the repre-

sentation L0,0 — it consists of 46 terms — however, the number of independent coefficients

is reduced to 26 due to the use of the trihedral symmetry. We write the operator as the

sum of four terms

O(0,0)
6 = O1 + τ

(

O1

)

+ τ2
(

O1

)

+ O2 , (5.12)

where

O1 =Tr
(

aZ6
1 + bZ4

1Z2Z3 + b1Z
4
1Z3Z2 + b2Z

2
1Z2Z

2
1Z3 + b3Z1Z2Z

3
1Z3

+ b4Z
3
1Z2Z1Z3 + cZ3

1Z3
2 + c1Z

2
1Z2Z1Z

2
2 + c2Z

2
1Z2

2Z1Z2 + c3Z1Z2Z1Z2Z1Z2

)

,

O2 =Tr
(

dZ2
1Z2

2Z2
3 + d1Z

2
1Z2Z3Z2Z3 + d2Z

2
1Z2Z

2
3Z2 + d3Z

2
1Z3Z

2
2Z3

+ d4Z
2
1Z3Z2Z3Z2 + d5Z

2
1Z2

3Z2
2 + d6Z

2
3Z1Z2Z1Z2 + d7Z1Z2Z1Z3Z2Z3

+ d8Z
2
3Z2Z1Z2Z1 + d9Z

2
2Z1Z

2
3Z1 + d10Z

2
2Z3Z1Z3Z1 + d11Z1Z2Z3Z1Z2Z3

+ d12Z1Z2Z3Z1Z3Z2+d13Z1Z2Z3Z2Z1Z3+d14Z
2
2Z1Z3Z1Z3+d15Z1Z3Z2Z1Z3Z2

)

,

and by τ(O1) we mean the operator obtained by the cyclic replacement τ : Z1 → Z2 →
Z3 → Z1 in all the terms. The operators in the representations L0,j (j 6= 0) are given by

O(0,j)
6 = O1 + ωjτ(O1) + ω2jτ2(O1) . (5.13)

After some long and rather tedious algebra, one can express the vanishing of the one-

loop anomalous dimension for the operator O(0,0)
6 as the sum of absolute squares.

3 |6am−b1q+bq̄|2+|b3m−d7q+d6q̄|2+|b4m−d8q+d7q̄|2+|b4m−d4q+d13q̄|2

+|b4m − d4q+d7q̄|2+|b3m−d7q+d1q̄|2+|b1m−2d15q+d7q̄|2+|bm−d7q+2d11q̄|2

+|b3m − d13q + d10q̄|2 + |b4m − d14q + d13q̄|2 + |bm − d13q + 2d11q̄|2

+|b1m − 2d15q + d13q̄|2 + |b3m − d13q + d1q̄|2 + |b1m − 2d15q + d12q̄|2

+|bm − d12q + 2d11q̄|2 + |b3m − d12q + d10q̄|2 + |b4m − d14q + d12q̄|2

+|b4m − d8q + d12q̄|2 + |b3m − d12q + d6q̄|2 + |bm − d9q + d10q̄|2

+|b1m − d14q + d9q̄|2 + |b1m − d8q + d9q̄|2 + |b2m − d5q + d8q̄|2

+|b1m − d8q + d2q̄|2 + |b1m − d14q + d3q̄|2 + |bm − d3q + d10q̄|2 (5.14)

+|b2m − d10q + dq̄|2 + |b2m − d1q + dq̄|2 + |bm − d2q + d1q̄|2

+|b2m−d6q+dq̄|2+|bm−d3q+d1q̄|2+|bm−d2q+d6q̄|2+|b1m−d4q+d2q̄|2

+|b1m − d4q + d3q̄|2 + |b2m − d5q + d4q̄|2 + |bm − d9q + d6q̄|2

+|d6m − c1q + 3c3q̄|2 + |d8m − 3c3q + c2q̄|2 + |d14m − 3c3q + c2q̄|2

+3|dm − cq + c2q̄|2 + 3|d5m − c1q + cq̄|2 + 2|d2m − c2q + c1q̄|2

+2|d9m − c2q + c1q̄|2 + |d10m − c1q + 3c3q̄|2 + 2|d3m − c2q + c1q̄|2

+|d4m − 3c3q + c2q̄|2 + |d1m − c1q + 3c3q̄|2 + 6|cm − b4q + bq̄|2

+6|c1m − b2q + b4q̄|2 + 6|cm − b1q + b3q̄|2 + 6|c2m − b3q + b2q̄|2 = 0
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The above equations lead to 52 equations in 26 unknowns. We find that there are precisely

two solutions that exists for generic values of the parameters. It is easy to see that there are

some identifications amongst the di. They are d1 = d6 = d10, d2 = d3 = d9, d4 = d8 = d14

and d7 = d12 = d13. This reduces the number of unknowns to 18. The explicit solutions

are somewhat unilluminating and will not be presented here. An important point is that

the two solutions can be characterised by a = 0 and a 6= 0. In the limit, h′ → 0, these two

solutions reduce to the operators that exist in the β-deformed theory for general values

of β. This is precisely what happened for the ∆0 = 3, Q = 0 operators as well. This

is a clear indication that the operators that are protected at one-loop in the β-deformed

theory and are in the representation L0,0 survive the h′ deformation. The operators in the

representation L0,j with j 6= 0 are however not protected operators.

5.1 Summary of results

We have shown that it is useful to organise chiral primaries in terms of representations

of the discrete group ∆(27). In particular, we have seen that operators appearing only in

one of the three representations, L0,0 and Va are protected at planar one-loop level. We

conjecture that this result is true in general. The general pattern for operators protected

at planar one-loop (and possibly beyond) organised in terms of the trihedral group is given

in the table below when ∆0 > 2. (We have excluded the quadratic operators since they

have a somewhat different behaviour.)

Scaling dim. N = 4 theory β-def. theory LS theory

∆0 = 3r L0,0 ⊕ r(r+1)
2

[

⊕i,j Li,j

]

L0,0 ⊕j L0,j 2L0,0

∆0 = a mod 3 (∆0+1)(∆0+2)
6 Va Va Va

The first column is only a reorganisation of the well-understood N = 4 primaries into

representations of ∆(27) [17]. The second column follows from the Lunin-Maldacena pre-

diction that chiral primaries in the β-deformed theory, for generic values of β, arise only

with charges (k, k, k) and (k, 0, 0) rewritten in terms of representations of ∆(27) [11]. The

last column is based on our computations in the LS theory and has been verified up to and

including scaling dimension six.

Further, we have seen that in other representations, operators are only protected in

a submanifold in the space of couplings. These submanifolds consist of several branches,

some of which do not intersect the subspace of β-deformed theories.

6. Conclusion

In this paper, we have studied the planar one-loop contribution of operators in the LS

theory for operators up to dimension six. We have used the trihedral group to classify

the operators and this has lead to a significant simplification to the problem. We find

that for generic values of couplings, the protected operators arise in the one-dimensional

representation, L0,0 when ∆0 = 0 mod 3 and in the three-dimensional representations Va
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when ∆0 = a mod 3 (a = 1, 2). We conjecture that this is true in general. It is interesting

to see if there is a simple proof of this statement.

The Leigh-Strassler superpotential makes an interesting appearance in a different con-

text. A recent computation all-orders perturbative computation of the effective superpoten-

tial for the so-called long-branes on the cubic torus using the topological Landau-Ginzburg

model turns out to be of the Leigh-Strassler form [32]. It is possible that this computation

may be related to the quantum effective superpotential of the LS theory.12 We are pursu-

ing the relationship of this work to the LS theory [34]. In particular, even if a direct map

doesn’t exist, it suggests a re-ordering of the perturbative computation of the quantum

effective superpotential for the LS theory and that the renormalised coefficients (up to an

overall normalisation) should be expressible in terms of theta functions of characteristic

three. This statement is modulo the effect of the the chiral Konishi anomaly which may

modify the statement.

An open question is to find the gravity duals for LS theories. A more limited question

is to ask whether one can find special values of the couplings like the case of rational β

in the β-deformed theory. The crucial input in finding the gravity duals whenever β was

rational is the realisation that the effect of discrete torsion in abelian orbifolds is to q-deform

the N = 4 superpotential [12 – 15]. One may ask whether discrete torsion in non-abelian

orbifolds could also produce the h′ deformation. The naive answer based on adapting the

analysis of ref. [6] to include discrete torsion is that no such couplings can arise. However,

since those results are based on ‘dimensional reduction’, it would be interesting to actually

carry out a CFT computation in string theory to verify that such terms are not generated

to come up with a no-go theorem.
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A. LS deformed N = 4 Yang-Mills theory

The Lagrangian density of the Leigh-Strassler theory in terms of N = 1 superfields is

L =

∫

d2θd2θ̄Tr
(

e−gV Φ̄egV Φ
)

+

[

1

2g2

∫

d2θTr
(

W αWα

)

(A.1)

+ih

∫

d2θTr
(

eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2

)

+
ih′

3

∫

d2θTr
(

Φ3
1 + Φ3

2 + Φ3
3

)

+ c.c.

]

12The authors of ref. [33] obtain an expression for the quantum effective superpotential for the β-deformed

theory using a relationship with matrix models. It is also of interest to see if these two effective potentials

are related.
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We denote the lowest component of the superfield Φi by Zi and its fermionic partner by ψi.

The vector multiplet in the Wess-Zumino gauge has as components, the gauge field, Aµ and

its superpartner, the gaugino, λ in addition to the auxiliary field D. All fields transform

in the adjoint of SU(N). Writing these in component fields we get the Lagrangian

L =Tr
(

− 1

2
FµνFµν − i 2λ̄σµDµλ − i ψ̄iσ

µDµψi + DµZiDµZ̄i

− g2

4
[Zi, Z̄i][Zj , Z̄j ] + i

√
2g ψ̄i[Zi, λ̄] + i

√
2g ψi[Z̄i, λ] − ih ψ̄3[Z1, ψ2]

+ ih̄ ψ̄3[Z̄1, ψ2] − ih′Z1ψ1ψ1 + ih̄′Z̄1ψ̄1ψ̄1 + cyc. perm.
)

− VF (Z) (A.2)

where DµZi = ∂µZi + ig[Aµ, Zi] and VF (Z) is as given in eq. (2.2).

A.1 Trace formulae for SU(N)

Below, we provide the trace identities and normalisations that we have used in our paper.

T aT a =
N2 − 1

N
I Tr(T aT b) = δab

Tr(AT aBT a) = Tr(A)Tr(B) − 1

N
Tr(AB) (A.3)

Tr(AT a)Tr(BT a) = Tr(AB) − 1

N
Tr(A)Tr(B)

B. Representations of the trihedral group, ∆(27)

In this appendix, we discuss the representation theory of the trihedral group ∆(27). [36 –

38] We expect chiral primaries of the Leigh-Strassler deformed theory to be in irreducible

representations of this group. Trihedral groups are finite subgroups of SL(3, C) of the form

A ⋊ C3, where A is a diagonal abelian group and C3 is the cyclic Z3 generated by

τ =







0 0 1

1 0 0

0 1 0






.

For the trihedral group, ∆(27), the group A is generated by g = 1
3(1, 1, 1) and h =

1
3 (0, 1,−1).13 In our example, g turns out to be the centre of ∆(27) and is a subgroup

of U(1)R.

The irreducible representations of ∆(27) consist of nine one-dimensional representa-

tions, LQ,j (Q, j = 0, 1, 2) and two three-dimensional representations Va (a = 1, 2). The

charge under g can be clearly identified with U(1)R charge.

LQ,j In the one-dimensional representations, one has the following action of the generators

h and τ

h · v = ωQ v , τ · v = ωj v where v ∈ LQ,j and ω = e2πi/3 .

13We denote by 1
R

(a, b, c) the matrix Diag(ǫa, ǫb, ǫc) with ǫ, a non-trivial R-th root of unity.
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Va In the three-dimensional representation, one has

h ·







v0

v1

v2






=







1 0 0

0 ωa 0

0 0 ω2a













v0

v1

v2






and τ ·







v0

v1

v2






=







0 0 1

1 0 0

0 1 0













v0

v1

v2







for a = 1, 2. Note that when a = 0, the above representation is reducible to a direct

sum, ⊕2
j=0L1,j, of one-dimensional representations.

The chiral superfields (Φ1,Φ2,Φ3) are in the representation V1 while their anti-chiral

partners transform in the representation V2. We will choose our chiral primaries to be

in one of these representations. Since the interactions in the Leigh-Strassler theory are

invariant under ∆(27), it follows that chiral operators in distinct representations of ∆(27)

cannot mix. However, operators in the same representation can and do mix.

B.1 Polynomials as irreps of ∆(27)

On taking the commutative limit, all our chiral primary operators reduce to polynomials

in three variables, (z1, z2, z3), where we replaced the matrices Zi by scalars zi (using the

lower-case to indicate the replacement). First, the triplet (z1, z2, z3)
T transforms in the

representation, V1. Second, we can organise the polynomials by degree — the degree is the

(naive) scaling dimension of the corresponding operator which we denote by ∆0. Thirdly,

∆0 mod 3, is the Z3 charge of the polynomial under the centre of the group (which is

generated by g defined above).

Polynomials in these variables of a given degree, ∆0, can be further organised into

irreducible representations of ∆(27). The precise representation is decided by the value of

∆0 mod 3. One has the following result:

• [∆0 = 0 mod 3] All polynomials can be organised in one-dimensional representations

of ∆(27, i.e., LQ,j. For example, when ∆0 = 3 the polynomials (z3
1 +ωjz3

2 +ω2jz3
3) ∈

L0,j and z1z2z3 ∈ L0,0. In particular, there is no polynomial whose degree is 0 mod

3 that is in the representation V1 or V2.

• [∆0 6= 0 mod 3] All polynomials must necessarily arise in one of the the three-

dimensional representations. In fact, defining a = ∆0 mod 3 with a = 1 or 2,

the polynomials must be in the three-dimensional representation Va. For example,

consider the F-term equations (dW = 0) which are of degree two. A straightforward

analysis shows that the three equations are in the representation V2.

The proof of the above statements goes as follows. Note that the generator g can be

realised in terms of h and τ as hτ−1h2τ . Using this, notice that for a vector v ∈ LQ,j,

g · v = ω3Qv = v. Thus, the Z3 charge associated with g is zero implying that the U(1)R
charge is zero modulo three. Similarly, for a triplet ~v ∈ Va, g · ~v = ωa ~v implying that the

U(1)R charge is a modulo three.

This leads to the following conclusion: All chiral primaries with ∆0 = 0 mod 3 must

be in any one of the one-dimensional representations of ∆(27) while those where ∆0 = a

mod 3 must arise in the three dimensional representation Va.
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C. Integrals

We evaluate dimensionally regulated momentum integrals, with D = 4 − 2ǫ, using the

Feynman parametrisation

∫

dDk

(2π)D
1

(k2)α1(p2)α2
=

1

B[α1, α2]

∫ 1

0
dx

∫ 1

0
dy δ(1 − x − y) xα1−1yα2−1

×
∫

dDk

(2π)D
1

(xk2 + yp2)α1+α2
(C.1)

=
1

B[α1, α2]

∫ 1

0
dxxα1−1(1−x)α2−1×

∫

dDk

(2π)D
1

(xk2+(1−x)p2)α1+α2

where B[α1, α2] is the beta-function.

The Fourier transform to position space is done using the following integral.

∫

dDp

(2π)D
eip·x

(p2)s
=

Γ[D2 − s]

4ǫ π
D
2 Γ[s](x2)

D
2
−s

(C.2)

Momentum integral (i).

∫

dDk

(2π)D
1

k2(k − p)2
=

∫ 1

0
dx

∫

dDk

(2π)D
1

(

(k − px)2 + p2x(1 − x)
)2

=

∫ 1

0
dx

Γ(ǫ)x−ǫ(1 − x)−ǫ

(4π)2−ǫp2ǫ
=

Γ(ǫ)B[1 − ǫ, 1 − ǫ]

(4π)2−ǫp2ǫ
(C.3)

Using the formula (C.2) above we obtain the integral in eq. (3.2) in position space as

∫

dDp

(2π)D
eip·x 1

(p2)2ǫ
=

Γ[2 − 3ǫ]

42ǫ π2−ǫ Γ[2ǫ] (|x|2)2−3ǫ
(C.4)

The integral in eq. (3.2) gives

(

Γ(ǫ)B[1 − ǫ, 1 − ǫ]

(4π)2−ǫp2ǫ

)2 Γ[2 − 3ǫ]

42ǫ π2−ǫ Γ[2ǫ] (|x|2)2−3ǫ
(C.5)

We expand this in powers of ǫ and obtain the answer in eq. (3.5).

Momentum integral (ii). The integral in eq. (3.11) using Feynman parametrisation

∫

dDp

(2π)D
1

(p − q)2(p2)1+ǫ
=

1

B[1, 1 + ǫ]

∫ 1

0
dx xǫ

∫

dDp

(2π)D
1

(

x(p − q)2 + xp2
)2+ǫ

=

∫ 1

0
dx xǫ

(

q2x(1 − x)
)−2ǫ Γ[2ǫ]

(4π)2−ǫ B[1, 1 + ǫ]Γ[2 + ǫ]

=
Γ[2ǫ]B[1 − 2ǫ, 1 − ǫ]

(4π)2−ǫ B[1, 1 + ǫ]Γ[2 + ǫ](q2)−2ǫ
(C.6)

Again taking the Fourier transform of the above expression we get the expression in

eq. (3.11).
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k

k−p
q−p

q

k−q
p

p

Figure 5: Gluon exchange

Gluon exchange contribution to anomalous dimensions. The contribution from

interaction terms ig Tr(∂µZi[A
µ, Z̄i]) and ig Tr(∂µZ̄i[A

µ, Zi]) to the anomalous dimension

of the operator O is computed here. There are different contractions giving two distinct

momentum integrals. The diagram in figure 5 can be evaluated when Case(1): Both the

interaction vertices involve ∂µZ (or ∂µZ̄ ), Case(2): When one vertex involves ∂µZ and

the other ∂µZ̄. We work out both the cases below.

Case(1) : From figure 5 given here we write down the Feynman integral for this case.

∫ ∫

dDkdDq

(2π)2D

k · (k − p)

k2(k − q)2(k − p)2q2(q − p)2
(C.7)

Considering only the part which is divergent we get,
∫ ∫

dDkdDq

(2π)2D

1

(k − q)2(k − p)2q2(q − p)2

We consider the k-integration first. Take k′ = k − p. After dimensionally regulating

and using Feynman parametrisation
∫

dDk′

(2π)D
1

k′2(k′ − q + p)2
=

∫ 1

0
dx

∫

dDk′

(2π)D
1

(

(k′ − (q − p)x)2 + (q − p)x(1 − x)
)2

=
Γ[ǫ]

(4π)2−ǫΓ[2]((q − p)2)ǫ

∫ 1

0
dxx−ǫ(1 − x)−ǫ

=
Γ[ǫ]B[1 − ǫ, 1 − ǫ]

(4π)2−ǫ(q − p)2ǫ
(C.8)

Doing the q-integration in the same way,

Γ[ǫ]B[1−ǫ, 1−ǫ]

(4π)2−ǫ

∫

dDq

(2π)D
1

q2
(

(q−p)2
)1+ǫ =

Γ[ǫ]B[1 − ǫ, 1 − ǫ]

(4π)2−ǫ

1

B[1, 1 + ǫ]

×
∫ 1

0
dy yǫ

∫

dDq

(2π)D
1

(

(q−yp)2+p2y(1−y)
)2+ǫ

=
Γ[ǫ]B[1−ǫ, 1−ǫ]

(4π)2−ǫ

Γ[2ǫ]

(4π)2−ǫB[1, 1+ǫ]Γ[2+ǫ](p2)2ǫ

×
∫ 1

0
dy y−ǫ(1 − y)−2ǫ

=
Γ[ǫ]B[1−ǫ, 1−ǫ]

(4π)4−2ǫ

Γ[2ǫ]B[1−ǫ, 1−2ǫ]

Γ[1+ǫ](p2)2ǫ
(C.9)
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Figure 6: One loop corrections to the scalar propagator

Again using formula (C.2) we Fourier transform and expand in powers of ǫ to obtain

1

256π6|x|4
(

1

ǫ
+ 2 + 3γE + 3log(π) + 3log(|x|2)

)

(C.10)

Case(2) :

∫ ∫

dDkdDq

(2π)2D

k · (q − p)

k2(k − q)2(k − p)2q2(q − p)2
(C.11)

The divergent part of this is
∫ ∫

dDkdDq

(2π)2D

k · q
k2(k − q)2(k − p)2q2(q − p)2

=
1

2

∫ ∫

dDkdDq

(2π)2D

k2 + q2 − (k − q)2

k2(k − q)2(k − p)2q2(q − p)2

=
1

2

∫ ∫

dDkdDq

(2π)2D

[

1

(k − q)2(k − p)2q2(q − p)2
+

1

k2(k − q)2(k − p)2(q − p)2

− 1

k2(k − q)2q2(q − p)2

]

=

∫ ∫

dDkdDq

(2π)2D

[

1

(k − q)2(k − p)2q2(q − p)2
− 1

2k2(k − q)2q2(q − p)2

]

(C.12)

The two integrals in the final expression above are already evaluated.
(

Γ[ǫ]B[1 − ǫ, 1 − ǫ]Γ[2ǫ]B[1 − ǫ, 1 − 2ǫ]

Γ[1 + ǫ]
− Γ4[1 − ǫ]Γ2[ǫ]

2 Γ2[2 − 2ǫ]

)

1

(4π)4−2ǫ(p2)2ǫ
(C.13)

Fourier transforming to position space using formula (C.2) and expanding in powers

of ǫ, we get the value of the above integral to be 1
256π6|x|2

. Hence there is no contribution

from this integral to the anomalous dimension.

D. One loop correction to scalar propagator

The diagrams in figure 6 are the one-loop contributions to the two point function 〈Z1Z̄1〉.
The dashed lines are the fermionic propagators and the wiggly lines are gauge boson prop-

agators. Gauge boson interactions are calculated in Landau gauge.
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Contribution from scalar tadpole due to interaction term − g2

4 tr([Zi, Z̄i][Zj , Z̄j ])

−g2

4
·2·tr

(

(T bT c−T cT b)(T cT a−T aT c)
)

∫

dDk
1

p2k2p2
=−g2 ·

(

Ntr(T aT b)
)

∫

dDk
1

p2k2p2

=−g2Ntr(T aT b)

∫

dDk
1

p2k2p2

(D.1)

where pµ is the external momentum and D = 4 − 2ǫ.

Contribution from scalar tadpole due to interaction terms in VF (Z)

4
[

|h|2 tr
(

(qT bT c−q̄T cT b)(qT aT c−q̄T cT a)
)

+|h′|2tr
(

T bT cT d)
(

T dT cT b)
]

×
∫

dDk
1

p2k2p2

= −4(|h|2+|h′|2/2)Ntr(T aT b)

∫

dDk
1

p2k2p2
(D.2)

Contribution from Yukawa interaction vertices i
√

2g tr
(

ψi[Z̄i, λ] + ψ̄i[Zi, λ̄]
)

.

The contribution from this interaction

−(i
√

2)2g2tr
(

T cT aT d−T cT dT a
)

tr
(

T cT bT d−T cT dT b
)

∫

dDk
σµkµσν(p − k)ν
2p2k2(p − k)2p2

= −4g2 Ntr(T aT b)

∫

dDk
k · p − k2

p2k2(p − k)2p2
(D.3)

Here we also use the identity tr(σµkµσνpν) = 2k · p
Contribution from Yukawa interaction vertices −ih tr

(

ψ3[Z1, ψ2]q
)

−ih′Z1ψ1ψ1+c.c.
)

[

− (i)2|h|2tr
(

qT cT bT d−q̄T cT dT b
)

Tr
(

qT cT aT d−q̄T cT dT a
)

+|h′|2tr
(

T bT cT d)
(

T dT cT b)
]

×
∫

dDk
σµkµσν(p − k)ν
p2k2(p − k)2p2

(D.4)

= −4(|h|2 + |h′|2/2) Ntr(T aT b)

∫

dDk
k · p − k2

p2k2(p − k)2p2

Contribution from scalar-gluon interaction terms ig tr(∂µZi[Aµ, Z̄i]) ,

ig tr(∂µZ̄i[Aµ, Zi])

2(i)2g2 tr
(

T bT cT d − T bT dT c
)

tr
(

T aT cT d − T aT dT c
)

∫

dDk
[ p2

2p2k2(p − k)2p2

]

+2(i)2g2 tr
(

T dT cT a − T dT aT c
)

tr
(

T dT cT b − T dT bT c
)

∫

dDk
[ (p − k)2

2p2k2(p − k)2p2

]

+4 (i)2g2tr
(

T dT cT a − T dT aT c
)

· tr
(

T bT cT d − T bT dT c
)

∫

dDk
[ p2 − p · k
2p2k2(p − k)2p2

]

= 2g2Ntr(T aT b)

∫

dDk
[ 1

2p2 k2 p2
+

1

p2k2(k − p)2p2

]

(D.5)

Contribution from gluon tadpole due to interaction term −g2tr([Aµ, Zi][Aµ, Z̄i])

−g2 ·tr
(

(T cT b−T bT c)(T cT a−T aT c)
)

∫

dDk
gµνgµν

p2k2p2
=−4g2Ntr(T aT b)

∫

dDk
1

p2k2p2

(D.6)
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Summing the contributions from each diagram, we see that quadratic divergences cancel.

The one-loop correction to 〈Za
i Z̄b

j 〉 is given as

−(2N) tr(T aT b) ·
(

|h|2 + |h′|2/2
)

∫

dDk
1

k2(p − k)2p2
(D.7)

Fourier transforming we get

= −N · tr(T aT b) ·
(

|h|2 + |h′|2/2
) (

Y122 + Y112

)

(D.8)

where Yijk =
∫

d4x 1
(x−xi)2(x−xj)2(x−xk)2

. In the large N limit we have |h|2 + |h′|2/2 = g2.

Hence we should get back the one-loop correction in N = 4 theory. From eq. (D.7) above,

we get,

2N · g2 tr(T aT b) ·
(

Y122 + Y112

)

(D.9)

This expression is similar in structure with the one obtained in [35].
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